PDU53

3-BIT, ECL-INTERFACED PROGRAMMABLE DELAY LINE SERIES PDU53)

FEATURES

- Digitally programmable in 8 delay steps
- Monotonic delay-versus-address variation
- Precise and stable delays •
- Input & outputs fully 100K-ECL interfaced & buffered •
- Available in 16-pin DIP (600 mil) socket or SMD

PDU53-xxM Military DIP

Part

Number

N/C □1

N/C □2

OUT 4

N/C □ 5

N/C □6

N/C ☐7

N/C 8

PDU53-xx

GND

□3

PIN DESCRIPTIONS

- IN Signal Input OUT Signal Output A2 Address Bit 2 A1 Address Bit 1 A0 Address Bit 0 VEE -5 Volts GND Ground
- The PDU53-series device is a 3-bit digitally programmable delay line. The delay, TD_A, from the input pin (IN) to the output pin (OUT) depends on the address code (A2-A0) according to the following formula:

$$TD_A = TD_0 + T_{INC} * A$$

FUNCTIONAL DESCRIPTION

where A is the address code, T_{INC} is the incremental delay of the device, and TD_0 is the inherent delay of the device. The incremental delay is

specified by the dash number of the device and can range from 100ps through 3000ps, inclusively. The address is not latched and must remain asserted during normal operation.

SERIES SPECIFICATIONS

- Total programmed delay tolerance: 5% or 40ps, • whichever is greater
- Inherent delay (TD₀): 2.2ns typical •
- Address to input setup (T_{AIS}): 2.9ns •
- Operating temperature: 0° to 85° C •
- **Temperature coefficient:** 100PPM/°C (excludes TD₀) •
- Supply voltage V_{EE}: $-5VDC \pm 0.7V$
- **Power Supply Current:** -150ma typical (50 Ω to -2V)
- Minimum pulse width: 3ns or 15% of total delay, whichever is greater
- Minimum period: 8ns or 2 x pulse width, whichever is greater

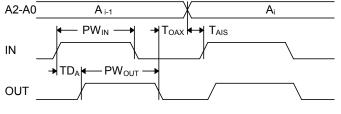


Figure 1: Timing Diagram

©1997 Data Delay Devices

⊐ N/C N/C 12 A0 N/C N/C 11 N/C N/C N/C 10 N/C 9 N/C PDU53-xxC3 SMD PDU53-xxMC3 Mil SMD

A2

A1

VFF

A0

Total Delav

Change (ns)

PDU53-100	100 ± 50	0.70			
PDU53-200	200 ± 60	1.40			
PDU53-250	250 ± 60	1.75			
PDU53-400	400 ± 80	2.80			
PDU53-500	500 ± 100	3.50			
PDU53-750	750 ± 100	5.25			
PDU53-1000	1000 ± 200	7.00			
PDU53-1200	1200 ± 200	8.40			
PDU53-1500	1500 ± 200	10.50			
PDU53-2000	2000 ± 400	14.00			
PDU53-2500	2500 ± 400	17.50			
PDU53-3000	3000 ± 500	21.00			
NOTE: Any dash number between 100 and 3000					

DASH NUMBER SPECIFICATIONS

Incremental Delav

Per Step (ps)

Any dash number between 100 and 3000 not shown is also available.

PACKAGES

N/C

N/C

GND

OUT

N/C

16 IN

15 A2

14 A1

DIP

13 VEE

APPLICATION NOTES

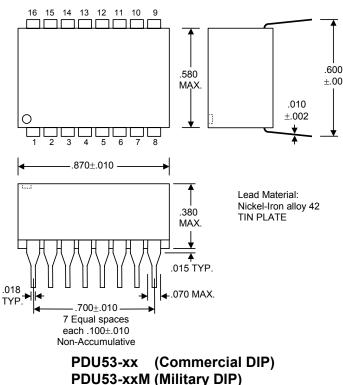
ADDRESS UPDATE

The PDU53 is a memory device. As such, special precautions must be taken when changing the delay address in order to prevent spurious output signals. The timing restrictions are shown in Figure 1.

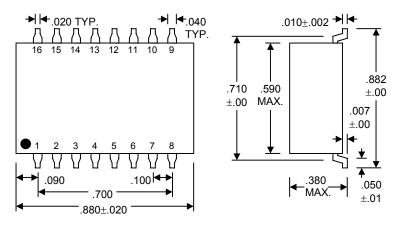
After the last signal edge to be delayed has appeared on the OUT pin, a minimum time, T_{OAX} , is required before the address lines can change. This time is given by the following relation:

 $T_{OAX} = max \{ (A_i - A_{i-1}) * T_{INC}, 0 \}$

where A_{i-1} and A_i are the old and new address codes, respectively. Violation of this constraint may, depending on the history of the input signal, cause spurious signals to appear on the OUT pin. The possibility of spurious signals persists until the required T_{OAX} has elapsed.


INPUT RESTRICTIONS

There are three types of restrictions on input pulse width and period listed in the **AC Characteristics** table. The **recommended** conditions are those for which the delay tolerance specifications and monotonicity are guaranteed. The **suggested** conditions are those for which signals will propagate through the unit without significant distortion. The **absolute** conditions are those for which the unit will produce some type of output for a given input.


When operating the unit between the recommended and absolute conditions, the delays may deviate from their values at low frequency. However, these deviations will remain constant from pulse to pulse if the input pulse width and period remain fixed. In other words, the delay of the unit exhibits frequency and pulse width dependence when operated beyond the recommended conditions. Please consult the technical staff at Data Delay Devices if your application has specific high-frequency requirements.

Please note that the increment tolerances listed represent a design goal. Although most delay increments will fall within tolerance, they are not guaranteed throughout the address range of the unit. Monotonicity is, however, guaranteed over all addresses.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (cont'd)

PDU53-xxC3 (Commercial SMD) PDU53-xxMC3 (Military SMD)

DEVICE SPECIFICATIONS

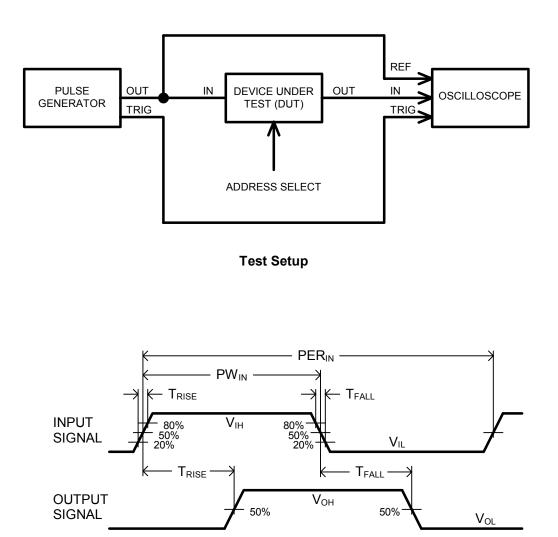
PARAMETER		SYMBOL	MIN	TYP	UNITS
Total Programmable Delay		TD _T		7	T _{INC}
Inherent Delay		TD ₀		2.2	ns
Address to Input Setup Time		T _{AIS}	2.9		ns
Output to Address Change		T _{OAX}	See Text		
	Absolute	PERIN	30		% of TD_T
Input Period	Suggested	PERIN	50		% of TD_T
	Recommended	PERIN	200		% of TD_T
	Absolute	PWIN	15		% of TD_T
Input Pulse Width	Suggested	PWIN	25		% of TD_T
	Recommended	PWIN	100		% of TD_T

TABLE 1: AC CHARACTERISTICS

TABLE 2: ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V_{EE}	-7.0	0.3	V	
Input Pin Voltage	V _{IN}	V _{EE} - 0.3	0.3	V	
Storage Temperature	T _{STRG}	-65	150	С	
Lead Temperature	T _{LEAD}		300	С	10 sec

TABLE 3: DC ELECTRICAL CHARACTERISTICS (0C to 85C)


PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
High Level Output Voltage	V _{OH}	-1.025	-0.880	V	V_{IH} = MAX,50 Ω to -2V
Low Level Output Voltage	V _{OL}	-1.810	-1.620	V	V_{IL} = MIN, 50 Ω to -2V
High Level Input Voltage	V _{IH}	-1.165	-0.880	V	
Low Level Input Voltage	V _{IL}	-1.810	-1.475	V	
High Level Input Current	I _{IH}		340	μA	V _{IH} = MAX
Low Level Input Current	I _{IL}	0.5		μA	V _{IL} = MIN

DELAY LINE AUTOMATED TESTING

TEST CONDITIONS

INPUT: Ambient Temperature: Supply Voltage (Vcc): Input Pulse:		OUTPUT: Load: C _{load} : Threshold:	50Ω to -2V 5pf ± 10% (V _{OH} + V _{OL}) / 2
Source Impedance: Rise/Fall Time: Pulse Width: Period:	levels 50Ω Max. 1.0 ns Max. (measured between 20% and 80%) PW _{IN} = 10ns PER _{IN} = 100ns		(Rising & Falling)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing